Hinkley Point, the new nuclear power plant in Somerset, UK delayed by new government

Plans to build the UK’s first new nuclear plant in decades, Hinkley Point in Somerset, received an unexpected setback when the government said it wanted to delay its final decision on the project.

The proposed plant is known as Hinkley Point C and would be built next to two existing facilities, Hinkley Point A and B. For the UK it would deliver 7 percent of UK’s electricity when most other nuclear power stations have closed down. At £24bn, it is the biggest and riskiest energy infrastructure project in British history and the decision as to whether it goes ahead lies with the new government that postponed the decision to September. The new UK government will “consider carefully” before proceeding with the project.
French firm EDF, which is financing most of the Hinkley Point project, approved the funding at a board meeting last week. Some in the new government are also concerned that the plant is being built by foreign governments. One-third of the total cost is being provided by Chinese investors. These funding arrangements mean the cost will not end up on the government’s books.

The low-carbon electricity will help towards EU and British climate change goals. The huge project, the largest in Europe, would provide an economic stimulus.

Ever since the UK government committed the nuclear energy in 2006, successive governments have argued that nuclear power is necessary as part of UK’s generation mix and to meet the UK’s climate change commitments.

Nuclear also delivers base load electricity – that is, the amount of power that is needed to satisfy minimum demand – because it is always available. That’s important as more intermittent renewables – such as the wind and solar power – come on to the grid.

Making water quality data more transparent: Lessons from an annual water quality report

 

A few weeks ago, I received my water bill in the mail, right on schedule. But this time, it came with a glossy pamphlet containing the annual water quality report. Normally I just toss it into the trash unread. It’s full of small print and lots of numbers, and I was never that concerned about our water quality.

I live in the NC mountains, where the water comes from “pristine mountain springs and streams”. And having grown up in New Orleans— spending 21 years drinking water from the polluted tail end of the Mississippi River— I figured any damage was already done. (But that New Orleans water sure was tasty!)

This time, though, I actually read the entire report. I’d heard about recent water issues in Flint, MI, and other cities, and I do have children who drink the water here. So I looked at this City of Asheville water quality report in detail, and here’s what I discovered.

The report contains a lot of rather informative text about how the City of Asheville treats its water and what possible risks could be present from various contaminants. The centerpiece of the report is a table that lists detected substances in the water. In 2015, 13 substances were detected out of 150 substances sampled for, and those 13 were “well within safe levels”. That sounded good.  But then I started looking at the report and wondering about certain things…

Let’s start with lead. The report has this:

City of Asheville water quality report- lead measurements

City of Asheville’s 2015 Water Quality Report: Lead, ppb

The “Highest Level Allowed” (the maximum contaminant level, or MCL) is 15 parts per billion (ppb). I did some searching and found a good article explaining lead sampling in water. If over 10% of tests come back over that level of 15 ppb, then the water utility must warn residents.

Asheville seems to have passed this test (only one sample exceeded the action level). However, the article mentioned above also describes how the tests for Flint, MI had possible problems because the Michigan Department of Environmental Quality threw out two samples.  With those samples included, the number of samples over the limit would have exceeded 10%, and water customers would have received a much earlier warning of possible lead issues.

So, back to Asheville. Were any samples thrown out— and if so, why? That information is not in the report.

Let’s take one more example: hexavalent chromium. Here is the City of Asheville report:

City of Asheville water quality report- hexavalent chromium measurements

City of Asheville’s 2015 Water Quality Report: Hexavalent Chromium, ppb

So, the average hexavalent chromium level in the water is 0.05 ppb. But there is no action level given, and the EPA definition text says nothing about any possible side effects. Through more searching, I learned that although hexavalent chromium is a carcinogen, the US EPA does not have a maximum contaminant level (MCL) for this compound.

California has a public health goal of 0.02 ppb, but North Carolina has a public health goal of 0.07 ppb. So, how would I interpret the Asheville value of 0.05 that falls in the middle of those two numbers? At least the report provides the detected range (ND – 0.08), so the maximum level in any sample was only a bit higher than the 0.07 level.

These two examples are not meant to disparage Asheville’s Annual Water Quality Report— it is a great way to deliver some basic information to water users. But for motivated water users, the report will lead to other questions— to answer these questions would require more context or a deeper dive into the actual data. Also, while I’m personally fairly tech-savvy and scientifically literate, many water users may lack the numerical and verbal literacy skills needed to understand the report.

For some closing thoughts:

  • How can water utilities make their sample data more transparent and available to users who want to take the “deeper dive”? How can users learn about sampling processes and decisions made— for example, “were any lead samples rejected, and why?”
  • How do users evaluate risks from compounds without EPA maximum contaminant levels, especially when states and regulators have conflicting levels?
  • How do water utilities present trend information and changes in water quality procedures over time? The 2015 report only shows data from that year. I dug up some older reports and found that hexavalent chromium was not detected at all in 2014. So what caused the detects in 2015? Also, lead was sampled at 100 sites in 2014, but only 50 sites in 2015.  Why was the number of samples cut in half?
  • How do you balance presenting too much information to the public (causing information overload) with presenting too little (causing users to be uninformed about quality issues)? Is there a way to show key information, but let users drill down into actual sampling data results for further details?
  • As a follow up to that last question— if you allow public access to sampling data, how do you ensure customers can interpret that data correctly, if those customers lack knowledge of sampling processes and any statistical techniques used?
  • Can the power of the internet be harnessed to distribute this data and make it understandable to customers? Are there tools that customers can use to explore the data on their own and see key findings and trends? I could not find anything online for Asheville.
  • Finally, given that a certain level of technical understanding is needed to read the Annual Report and explore any actual data— do we need a neutral party to serve as interpreter and interlocutor for the public when dealing with water utilities? Who would play that role?

Other Locus contributors will explore some of these issues in future posts.  In the meantime, please share your own thoughts and ideas in the comments section below.

 


Locus employee Todd Pierce

About guest blogger— Dr. Todd Pierce, Locus Technologies

Dr. Pierce manages a team of programmers tasked with development and implementation of Locus’ EIM application, which lets users manage their environmental data in the cloud using Software-as-a-Service technology. Dr. Pierce is also directly responsible for research and development of Locus’ GIS (geographic information systems) and visualization tools for mapping analytical and subsurface data.

EPA plans to regulate carbon emissions from aircraft

The US Environmental Protection Agency on Monday announced plans to limit carbon emissions from aircraft.

The EPA issued a final scientific assessment that concluded that carbon emissions from aircraft endanger public health and welfare, a legal prerequisite the agency must take before regulating those emissions.

EPA officials said last year when first proposing the aircraft scientific assessment that any regulation would be implemented in coordination with the International Civil Aviation Organization, a branch of the United Nations, which is drafting a global standard for airline carbon emissions.

Emissions from aircraft represent about 2% of total global carbon emissions, and the U.S. is the largest contributor to global aviation greenhouse gasses, according to federal data. The EPA said aircraft are the third-largest source of greenhouse gas emissions in the U.S. transportation sector, accounting for about 3% of such emissions in the country.

EPA has already set effective GHG standards for cars and trucks. EPA anticipates moving forward on standards that would be at least as stringent as ICAO’s standards.

Military and small piston-engine planes often used for recreational purposes would be exempt from the new regulation. Excluding these two categories, the EPA’s scientific finding applies to 89% of all U.S. aircraft carbon emissions.

Airlines for America, the trade association representing U.S. airlines and air cargo carriers, said it commends the EPA’s action because it is working within the coming international framework.

In 2009 the International Air Transport Association, a global trade group, agreed to achieve carbon-neutral growth by 2020, meaning any future growth in air travel wouldn’t produce a net increase in carbon emissions.

Then, from 2020 through 2050, the industry aims to reduce its 2005 emission levels by half, largely through the use of sustainable fuels. The effort to use sustainable fuels has already started, and manufacturers and airlines support of alternative fuels is high.

Carbon management.

EPA to regulate aircraft emissions.

To that end, the US biofuels leader, Amyris, Inc. and oil company Total have partnered to develop an alternative aviation jet fuel made with a sustainably-sourced hydrocarbon using Amyris’s proprietary synthetic biology platform. In 2014, Amyris received industry acceptance and regulatory approval for renewable jet fuel in key U.S., European and Brazilian markets. The New York Times writes that Amyris renewable jet fuel “holds the elusive promise of better energy security, reduced carbon emissions, and lower fuel costs. Amyris’ jet fuel can reduce greenhouse gas emissions by up to 80 percent compared with petroleum fuels, when compared unmixed to petroleum fuels on a one-to-one basis, according to Amyris. Renewable fuels like Amyris farnesane ‘would help reduce the carbon footprint of commercial aviation,’ the Federal Aviation Administration said.”

Amyris announced that, on May 29, 2016, Cathay Pacific commenced a two-year program of flights from Toulouse to Hong Kong using Amyris renewable jet fuel.  The initial 12-hour flight was the longest flight using a renewable jet fuel to date, further underpinning the ‘drop-in’ characteristics of Amyris Biojet fuels. Cathay took delivery of a new Airbus A350-900 that flew from the Airbus facility in Toulouse, France, to Hong Kong using a 10% biofuel jet blend provided by Amyris with the commercial and industrial support of Total S.A. The combination of the new airplane’s improvements in fuel efficiency (about 25% better than current aircraft) and the fuel’s properties resulted in an estimated 30% reduction in CO2 emissions according to Cathay when compared to comparable flights in recent-generation aircraft using fossil fuels.

Stanford Board of Trustees issues a statement on climate change

In a statement, the Board of Trustees underlines Stanford’s commitment to battling climate change, highlights university initiatives to address it and responds to Fossil Free Stanford’s request to divest from the fossil fuel industry.

The trustees have concluded that Stanford’s endowment will not divest, based on a review of criteria in the university’s Statement on Investment Responsibility and input from the Advisory Panel on Investment Responsibility and Licensing. The trustees also announce a new climate task force that will solicit new ideas from across the Stanford community for addressing climate change.

Find out more about Stanford University’s new climate change policy.

Why visibility on environmental health & safety compliance is still so important (yet another example)

Just this week, a subsidiary of Talus LLC was hit with a $4 million fine, $200,000 in community service payments and three years of probation for EHS violations and violations of the Clean Water Act.

According to the U.S. Attorney’s Office for the Eastern District of Louisiana, Talos Energy Offshore, LLC, will be required to comply with a Safety and Environmental Compliance Plan.  One of the more surprising findings was the violation of the Clean Water Act.  The company reportedly tampered with the method of collecting the monthly overboard produced water discharge samples to be tested for oil and grease based on its NPDES permit.  They were also fined for other various EHS violations related to offshore operations.

Although good environmental data management and a comprehensive Safety and Environmental Compliance Plan can’t entirely prevent humans from making errors, it can provide the structure and tools to ensure that companies are following environmental requirements.  It also provides visible mechanisms to track compliance and identify corrective actions. The fact that the findings from the U.S. Attorney’s office required the company to follow a Safety and Environmental Compliance Plan strongly suggests they did not have one in place at all.

Cases like this are a good reminder that companies can’t expect to stay in compliance with the myriad of regulations and requirements without a solid environmental plan, and the right tools to make that plan work.

If your organization is ready for a better compliance management system, here is a good place to start:

  • Step 1:  Know and document what rules and regulations you must follow— this is the hard part.
  • Step 2:  Get requirements into a shareable environmental compliance software system. And when you’re offshore, the best solution is in arguably a cloud software system, so that employees and stakeholders in any location can monitor and track real-time performance. And don’t forget to make sure the solution you choose can provide updates and alerts when relevant regulations change.
  • Step 3:  Trust, but verify— have the checks and audits set up and performed regularly, to find issues before the regulatory agencies find them.
  • Step 4:  Log in and view your status, issues, audits, findings and key metrics.

Once you put a well-thought-out plan in action, you will be amazed at how much easier it is to manage your environmental compliance— on or offshore.

Water Lead Contamination—From Rome to Flint

By now, the public health emergency resulting from lead-contaminated water in Flint, Mich., has been made abundantly clear.

The city changed its water source from the Detroit system to the Flint River in April 2014 as a cost-saving measure, exposing its residents to untreated water replete with lead leached from aging pipes. Last September, a local health center found that the proportion of children with elevated lead levels in their blood had nearly doubled since the switch was made. As attention grew around the issue, so too did the public alarm — with good reason. Photos showed Flint residents standing in long lines to collect bottled water and get their children’s blood tested, or standing in court calling for compensation.

And then there were the photos of people holding up samples of the water that had come out of their taps for more than a year. The liquid appears a translucent yellow-brown instead of colorless and clear; if images could emit an odor, these would be foul. But the truly terrifying fact about the water crisis in Flint is invisible. It is the insidious effect of growing up or growing old while unknowingly allowing lead into your bloodstream. According to the World Health Organization, lead creates developmental and behavioral issues in children that are believed to be irreversible.

Water lead poisoning has occurred not just in Flint but all over the country, for decades — and not only from water, but (primarily) from the paint that colors old homes.

On the federal level, there is no comprehensive understanding of the extent to which the population is being exposed to hazardous amounts of lead. Why? Because there is no federal or even state water quality database which public or impacted communities could mine for information. There is a better way. EPA and other agencies responsible for water quality must move into a new century and install a centralized, web-based water quality database where all testing results they collect from various reporting entities should be stored and make accessible in real-time to the general public. That type of transparency is the only way to avoid another Flint. The technology exists but political will may not be there yet.

Flint may have in recent months become synonymous with lead contamination in America, but it is by no means the only — or the most extreme — example of how the toxic element can make its way into our bodies.

Some historians argue that the lead poisoning contributed to the decline of the Roman empire. A team of archaeologists and scientists has recently discovered just how contaminated Roman tap water was. The team dredged sediment downstream from Rome in the harbor basin at Portus, a maritime port of imperial Rome, and from a channel connecting the port to the Tiber River. The researchers compared the lead isotopes in their sediment samples with those found in preserved Roman piping to create a historical record of lead pollution flowing from the Roman capital. Tap water from ancient Rome likely contained up to 100 times more lead than local spring water.

How come that 2000 years later we have still not learned the lesson?

Environmental and Sustainability Software: How one company’s cloud environmental and sustainability software is changing how firms and government manage environmental information.

How one company’s cloud environmental and sustainability software is changing how firms and government manage environmental information.

Water Wars

California. California is now heading into its fourth year of record-breaking drought, with no water relief in sight. High temperatures, little precipitation, and historically low snowpack have left the state with dwindling water reserves. The situation is so bad, as NASA scientist Jay Famiglietti wrote in an LA Times op-ed last week, that California has only a year of water left in its reservoirs. Household water rationing is already planned.

Las Vegas. An ongoing drought and the Colorado River’s reduced flow have shrunk Lake Mead to its lowest level in generations. The reservoir, which supplies 90% of Las Vegas’ water, is ebbing as though a plug had been pulled from a bathtub drain. For six years, the Southern Nevada Water Authority has been building an intake pipe below the reservoir’s two existing pipes. Due for completion in fall 2015, critics say it may not provide a long-term solution.

Ireland. Tens of thousands of people marched in Dublin, Ireland on Saturday, 21 March 2015, in the latest protest against the government’s new water charges. The government has begun directly charging households for water use.

Detroit: In bankrupt Detroit back in June the city authorities decided to cut off supply to 200,000 homes who had not or could not afford to pay water bills. Since water charges were introduced a decade ago bills have soared by 120%. The UN condemned the cutting off of the water supply to these people as a “violation of the human right to water and other international human rights”.

Bolivia. The average price of water quadrupled after it was privatized, leading to civil unrest and the eruption of “water wars” in the city of Cochabamba.

Uruguay. The sell-off of water and subsequent rising prices led in 2004 to the government outlawing the privatization of this public utility.

France. The citizens of Paris voted to reject plans to privatize water and took the utility back into public ownership.

The Emerging and Innovative Blue Tech Industry

Have you heard of the Blue Tech market?  Blue, as in blue water, is an emerging sector, with its roots coming from European entrepreneurs, that focus on developing leading edge products to ensure clean water.  I took a deeper dive into the new area and found a lot of interesting products and solutions such as miniature sensors to detect micro organisms, bacteria as well as robotic fish housed with optical sensors.  The advances and innovations are quite remarkable and clever, however the real challenge for these budding companies will be the mindset of the water industry.  Products however relevant products must first and foremost guarantee safety, reliability and scalability. For water leaders, these key requirements will always trump innovation.

Don’t get me wrong. I embrace innovation.  After all, Locus is located in the heart of Silicon Valley.  As with all innovative products, timing is a key factor in success, and for Blue Tech products, the timing might be off.  According to the American Water Works Association (AWWA), water utilities are now focused on repairing, updating and expanding its infrastructure, and in the United States, the cost of that will exceed $1 trillion over the 25 years.  Industry motivators are ensuring water safety, managing supply, and balancing demands of an ever increasing population.  I hope for the sake of innovation that some of these products become “must have” rather than a “nice to have”.  Only timing will tell.

Locus Technologies receives EBJ Business Achievement award for Information Technology

Environmental Business Journal (EBJ) recognizes firms for growth and innovation in 2014

MOUNTAIN VIEW, Calif., 10 March 2015 — Locus Technologies announced today that Environmental Business Journal (EBJ), a business research publication which provides high value strategic business intelligence to the environmental industry, granted the company the 2014 award for Information Technology in the environmental and sustainability industry for the ninth time.

Locus was recognized for significant strategic strides in 2014 including entering the water quality management (drinking water supplies and waste water) market; introducing its new Locus Platform (a highly configurable, user-friendly interface to fully meet individual organizations’ environmental management needs); and launching Locus Mobile (a field data collection solution that is fully integrated with Locus’s flagship Environmental Information Management [EIM] platform). In addition, Locus continues to maintain its leadership position in the commercial nuclear industry by solidifying business with more than 50 percent of all U.S. commercial reactor facilities that use Locus EIM for radionuclides monitoring management.

“Locus continues to influence the industry with its forward-thinking product set and eye for customer needs,” said Grant Ferrier, president of Environmental Business International Inc. (EBI), publisher of Environmental Business Journal.

“We are very proud to receive the prestigious EBJ Information Technology award in environmental business for the ninth time. It is a statement of our vision and perseverance to accomplish this level of recognition, especially now as we lead the market by providing robust solutions for the emerging space of cloud and mobile-based environmental information management,” said Neno Duplan, President and CEO of Locus Technologies.

The 2014 EBJ awards, hosted by EBI Inc., will be presented at the annual executive retreat called the Environmental Industry Summit XIII in San Diego, Calif. on March 11-13, 2015.