Data mining gains more cachet in construction sector

Locus is mentioned in ENR’s article about data mining, discussing how Locus software helps our long-time customer, Los Alamos National Laboratory, manage their environmental compliance and monitoring.

Rethinking Urban Water Management

 

Water utility worker stands among tanks

Improved wastewater distribution and treatment technologies have largely eradicated once-common waterborne diseases.

Water supply and distribution were ranked as the fourth greatest engineering achievement of the 20th century by the National Academy of Engineering (NAE), and rightfully so.

Developments in water management have drastically improved public health and safety.  In the early 1900s, for example, dysentery and diarrhea, both waterborne diseases, were the third largest cause of death in the United States (Wulf, 2000).

Currently, incidences of waterborne diseases in the United States are minimal, thanks in large measure to improved water distribution and treatment technologies.  Additionally, cities are now less susceptible to flooding due to the development and implementation of storm drain systems. The current paradigm in urban water management entails a centralized drinking water plant, connected to individual households through an underground network of pipes, and a sewer that carries the wastewater to a centralized treatment plant for further discharge into a natural water stream.  This system has permitted significant progress in our society.

Our clean water supply and sanitation systems may be endangered

NAE also says that providing access to clean water is the fifth greatest challenge that we will face this century.  Despite all its positive qualities, the urban water management paradigm has some serious limitations that are likely to get worse in the future due to increasing urban population, expansion of paved areas, scarcity of water, and climate change:

  • Reliance on large quantities of water
    Centralized systems depend heavily on large quantities of water— an already scarce resource that will likely become even more so, with increasing population and climate change.  Population growth also requires increasing the capacity of the water treatment plants and expanding the already-complex network of water lines.
  • More runoff
    Fast-growing cities mean larger paved areas and, therefore, higher runoff during rain events.  Runoff, which carries pollutants from the street surface, is difficult and expensive to contain and treat. Many cities— including some cities here in the San Francisco Bay Area— discharge their storm water runoff directly to the sea, with minimal treatment.  If you live in the San Francisco Bay area, you may have noticed blue signs posted next to storm drains, which read “Drains to the Bay”.  Runoff is expected to become an even bigger issue due to the variability in rainfall caused by climate change.
  • Expensive operation and maintenance
    Extensive underground pipe networks for drinking and wastewater are expensive to operate and maintain.  They make urban planning more difficult because pipe locations are not always known, and multiple independent agencies and companies run pipes and cables underground. Furthermore, the lead poisoning in Flint, Michigan, shows us that poorly maintained old pipes can present a serious public health issue.
  • Leaky pipes
    An estimated 10 – 40% of the global urban water supply is lost due to leaky pipes, which are difficult and costly to repair (Larsen et al., 2016)..
  • Lost nutrients
    Centralized water systems are not particularly efficient in recovering the nutrients that wastewater offers (i.e., nitrogen and phosphorous).
In search of a more sustainable solution
Water treatment utility plant

Centralized treatment plants have vastly improved public health, but perhaps a more decentralized urban water management system would address some of their shortcomings.

Across the country and the world, innovative teams have proposed and implemented multiple improvements and alternatives to the current urban water management paradigm.  But there is still no widely-accepted solution to the current and future challenges in urban water management.

A real, sustainable solution would involve a combination of measures adapted to local needs.  One promising approach to replace or supplement our current systems is to decentralize the management of urban water.  This means treating the wastewater close to the source in small-scale treatment systems, instead of transporting it through a complex network of pipes to a centralized treatment plant.  Decentralization offers a series of advantages— such as less reliance on pipes, easier coverage expansion in rapidly growing cities, lower variability in the loading of the treatment systems, and efficient utilization of the wastewater as a resource.

Decentralized systems, for example, offer the opportunity to separate blackwater (urine, faeces, flushwater), brownwater (faeces and flushwater), and greywater (water from washing food, clothes, and dishware, and from bathing)— which would be very complicated in a centralized system, due to the need to install separate pipelines for each.

Separating these sources makes wastewater treatment more efficient, as each of them require different extents of treatment.  It also opens the possibility of water reuse.  For example, greywater can easily be treated at a local scale and reused, therefore saving water and energy.  Source separation also provides the opportunity to recover nutrients from human waste more efficiently.  Urine, for example, contains a high concentration of nitrogen, which is lost as nitrogen gas in most centralized treatment plants.  By separating the urine in a decentralized system, nitrogen could be recovered.

Nevertheless, decentralized systems have their own challenges.  These include the complexity of operating, maintaining, and inspecting a network of treatment systems; the development of reliable and robust small-scale systems; and public acceptance.  Decentralized urban water management is still in its early development, but it’s an idea that certainly deserves further consideration.

Why now?

Historically, major innovations in urban water management have been triggered by crises: the overpopulation of Ancient Rome led to the development of large scale water distribution systems; the cholera and typhoid fever outbreaks in Europe led to the development of disinfection; and the severe pollution of water stream led to development and implementation of wastewater treatment (Sedlak, 2014).  With increasing world population, rapid urbanization, climate change, and a growing scarcity of resources, our current urban water management systems will be under increasingly significant stress.  It is crucial to our health, our safety, and the overall well-being of our society that we anticipate the challenges and start innovating now.

References
Hansen, R. D. (n.d.). Water and Wastewater Systems in Imperial Rome. [online]  <Accessed 16 December 2016>

Larsen, T. A., Hoffmann, S., Lüthi, C., Truffer, B., Maurer, M. (2016). Emerging solutions to the water challenges of an urbanizing world. Science, 352 (6288), pp. 928-933.

National Academy of Engineering. (2008). Grand Challenges for Engineering. National Academy of Science.

San Francisco Public Utilities Commission. (n.d.). Only Drain Down the Rain. [online]  <Accessed on 16 December 2016>

Sedlak, D. (2014). Water 4.0: The Past, Present, and Future of the World’s Most Vital Resource. Yale University Press.

Tilley, E., Ulrich, L., Lüthi, C., Reymond, P., Schertenleib, R., Zurbrügg C. (2014). Compendium of Sanitation Systems and Technologies, 2nd Revised Edition. Swiss Federal Institute of Aquatic Science and Technology (Eawag), Dübendorf.

Wulf, W. A. (2000). Great Achievements and Grand Challenges. The Bridge, 30 (3&4), pp. 5-10.

Still looking for the right EHS software to revolutionize your environmental and compliance initiatives?  Book a demo with us today!

 


Locus environmental engineer Victor Huanambal

About guest blogger— Victor Huanambal, Locus Technologies

Victor Huanambal has been working at Locus for close to two years as an environmental engineer. He graduated from the University of California, Berkeley, in 2014.

At Locus, he is mostly involved in projects related to groundwater remediation, environmental compliance, and greenhouse gases verification.

San Jose Water Company selects Locus Platform for environmental compliance management

 

SAN FRANCISCO, Calif., 29 November 2016 — Locus Technologies (Locus), a leading provider of cloud-based software solutions to streamline EHS regulation and compliance management, has partnered with San Jose Water Company for an implementation of the Locus Platform.

San Jose Water Company is an investor-owned water utility that serves over one million people in the greater San Jose metropolitan area. San Jose Water Company has been a customer of Locus since 2014, and has been using Locus EIM and Locus Mobile for its drinking water compliance activities. After finding success with their EIM solution, San Jose Water Company is expanding its Locus usage to Locus Platform.

San Jose Water Company will take advantage of the flexibility of the Locus Platform to configure a range of environmental compliance apps for tracking and reporting water discharges and hazardous material inspections, helping Locus to further strengthen its position in the water utilities market. By choosing to build most of their applications themselves, San Jose is taking advantage of Locus Platform’s easy-to-use configuration workbench to create unique and effective solutions. They will be able to use Locus Platform to support compliance with EPA’s Clean Water Act, Clean Air Act, and Resource Conservation and Recovery Act (RCRA).

In addition to tracking discharges and inspections, San Jose Water Company will use Locus Platform’s capabilities for reminders and checklists associated with other compliance requirements. They will also take advantage of Locus Platform’s built-in mobile features to enable their custom apps and streamline data collection throughout their various departments.

Locus Platform’s configurable solution will replace a range of self-built spreadsheet solutions and consolidate the water utility’s environmental compliance in one application. With the built-in configuration flexibility, San Jose Water Company’s Locus Platform will be able to grow and change as new regulatory requirements arise.

“Our recent successes in deploying our software solutions to customers in the water utility industry proves their versatile nature. San Jose Water Company needed a data management system that was tailored to their specific business practices. The Locus Platform allows for full configurability of its data collection tools, workflows, and outputs. By using these tools, the software solution fits the business— not the other way around.” said J. Wesley Hawthorne, President of Locus Technologies. “They were also impressed with their ability to self-configure and manage their own applications, which allows them to add new applications as their needs change.”

ABOUT SAN JOSE WATER COMPANY
San Jose Water Company (SJWC), a wholly owned subsidiary of SJW Group and founded in 1866, is an investor-owned water company headquartered in San Jose and is one of the largest and most technically sophisticated urban water system in the United States. SJWC serves over 1 million people in the greater San Jose metropolitan area comprising about 138 square miles. The utility delivers safe, high quality, and reliable water and exceptional customer service.

Cortina Rancheria selects Locus Technologies’ EIM for its water quality and environmental management system software

The Locus EIM SaaS will streamline the Cortina Rancheria environmental monitoring program under U.S. EPA Clean Water Act


San Francisco, Calif., 1 November 2016 — Locus Technologies, a leader in environmental and compliance enterprise management software, announced today that the Cortina Rancheria Kletsel Dehe Band of Wintun Indians (Cortina Rancheria) has selected Locus EIM as its environmental information management system.

Cortina Rancheria is implementing the Locus EIM SaaS-based software to manage their environmental monitoring under the U.S. EPA Clean Water Act.  Locus EIM will enable the tribe to consolidate and better manage its field, water quality, and air monitoring data, with output reporting to the EPA WQX database.

Locus EIM is a comprehensive environmental data management system designed for the variety and complexity of environmental sampling and analysis. EIM has all the built-in tools necessary for any environmental media sampling event, and it includes a powerful, integrated mobile application to streamline data acquisition.  With built-in sample planning, laboratory data upload, and a wide range of reporting and visualization tools, EIM is a complete solution for any environmental monitoring and reporting need and an excellent fit for natural resources monitoring.

“As the U.S. EPA recently approved the Cortina Rancheria Kletsel Dehe Band of Wintun Indians’ right to develop tribal water quality standards, the timing for EIM implementation is perfect.  Their use of EIM will help achieve their environmental stewardship goals by providing them the software tools to efficiently manage their water quality and tribal resources” said Wes Hawthorne, President of Locus.  “Our EIM software will also support their need to upload data to the EPA’s systems in a timely and efficient manner”.

ABOUT CORTINA INDIAN RANCHERIA
Cortina Rancheria is a federally recognized tribe, enacted in 1907 by order of the U.S. Secretary of the Interior.  The Tribe has a formally adopted constitution and is governed by a duly elected five (5) member Tribal Council, overseen by the General Council.  The Rancheria is located approximately seventeen (17) miles southeast of Williams, CA at the base of the Western Foothills.  The Rancheria consists of 640 acres of sovereign land and resources and has over 200 Tribal members.

Aviation industry agrees to cap CO2 emissions, other transportation industries to follow

The first deal limiting greenhouse gasses from international aviation has been sealed after years of negotiations. Carbon emissions from international aviation will be capped under a global agreement to limit the impact of commercial flights on the climate. The deal launches a voluntary compliance system from 2021 that would become mandatory in 2027. Airlines spent about $181 billion on fuel last year, and this deal would add between $5 and $24 billion in additional costs, depending on the price of carbon at the time. The aviation carbon cuts were agreed in Montreal by national representatives at the International Civil Aviation Organization, ICAO.

The deal comes in a critical week for climate policy when the Paris agreement to stabilize climate change passed a key threshold for becoming law. International aviation is responsible for putting more carbon dioxide into the atmosphere every year than the whole of the Germany or the UK. And until now, there has been no global consensus on how to address aviation emissions.

CO2 will be allowed to grow to 2020, but after that, emissions will need to be offset. The deal will be voluntary to 2026, but most major nations are expected to take part. Airlines that pollute more than the prescribed level after 2020 would have to purchase carbon-offsetting credits.

The offsetting proposal is especially controversial. Airlines are striving to make planes more efficient, but the industry can’t innovate fast enough to contain its dynamic growth.

That led to the proposal for offsetting – but sometimes offsetting by planting trees is not enough and is prone to double-counting.

One way to offset emissions, besides planting trees, is using trees’ and other plants spoils to make sustainable fuels. The effort to use sustainable fuels has already started, and manufacturers and airlines support of alternative fuels is high.

To that end, the US biofuels leader, Amyris, Inc is developing an alternative aviation jet fuel made with a sustainably-sourced hydrocarbon using Amyris’s proprietary synthetic biology platform. It is one of the most promising developments in aviation fuels in decades.

Amyris’ jet fuel can reduce greenhouse gas emissions by up to 80 percent compared with petroleum fuels, when compared unmixed to petroleum fuels on a one-to-one basis, according to Amyris.

Attempts have been made for nearly two decades to include aviation and shipping in the UN’s climate agreements, but both sectors have managed to avoid firm targets.

US EPA earlier this year issued a final scientific assessment that concluded that carbon emissions from aircraft endanger public health and welfare, a legal prerequisite the agency must take before regulating those emissions in the US. It is widely expected that EPA will introduce its set of rules for regulating domestic aircraft emissions in the US. Domestic aviation represents about 40% of total carbon-dioxide output from commercial flights.

Environmental groups said they hope the action to curb airline emissions will spur a similar cap on maritime CO2 production. Maritime emissions aren’t covered by the Paris climate deal even though the industry is considered a major carbon emitter.

All these emissions trackings must be managed and verified and will require companies to install scalable and intelligent database systems like Locus SaaS-based EIM and Locus Platform that already help many companies comply with various emission laws and regulations around the world.

Hinkley Point Nuclear Power Plant: UK approves nuclear plant deal

The British government has approved a new $24 billion nuclear power station in the UK after imposing “significant new safeguards” to protect national security.

The new plant at Hinkley Point in Somerset is being financed by the French and Chinese governments.

However, the UK government says it will have control over foreign investment in “critical infrastructure”.

UK Government will be able to stop EDF, the state-controlled French energy firm, from selling its stake in Hinkley.

Jean-Bernard Lévy, chief executive of EDF, which is building the plant, said: “The decision of the British Government to approve the construction of Hinkley Point C marks the relaunch of nuclear in Europe.”

EDF is funding two-thirds of the project, which will create more than 25,000 jobs, with China investing the remaining.

The Chinese agreed to take a stake in Hinkley, which will meet 7% of Britain’s energy needs, and to develop a new nuclear power station at Sizewell in Suffolk on the understanding that the UK government would approve a Chinese-led and designed project at Bradwell in Essex. That decision has raised questions over national security.

 

Hinkley Point, the new nuclear power plant in Somerset, UK delayed by new government

Plans to build the UK’s first new nuclear plant in decades, Hinkley Point in Somerset, received an unexpected setback when the government said it wanted to delay its final decision on the project.

The proposed plant is known as Hinkley Point C and would be built next to two existing facilities, Hinkley Point A and B. For the UK it would deliver 7 percent of UK’s electricity when most other nuclear power stations have closed down. At £24bn, it is the biggest and riskiest energy infrastructure project in British history and the decision as to whether it goes ahead lies with the new government that postponed the decision to September. The new UK government will “consider carefully” before proceeding with the project.
French firm EDF, which is financing most of the Hinkley Point project, approved the funding at a board meeting last week. Some in the new government are also concerned that the plant is being built by foreign governments. One-third of the total cost is being provided by Chinese investors. These funding arrangements mean the cost will not end up on the government’s books.

The low-carbon electricity will help towards EU and British climate change goals. The huge project, the largest in Europe, would provide an economic stimulus.

Ever since the UK government committed the nuclear energy in 2006, successive governments have argued that nuclear power is necessary as part of UK’s generation mix and to meet the UK’s climate change commitments.

Nuclear also delivers base load electricity – that is, the amount of power that is needed to satisfy minimum demand – because it is always available. That’s important as more intermittent renewables – such as the wind and solar power – come on to the grid.

Making water quality data more transparent: Lessons from an annual water quality report

 

A few weeks ago, I received my water bill in the mail, right on schedule. But this time, it came with a glossy pamphlet containing the annual water quality report. Normally I just toss it into the trash unread. It’s full of small print and lots of numbers, and I was never that concerned about our water quality.

I live in the NC mountains, where the water comes from “pristine mountain springs and streams”. And having grown up in New Orleans— spending 21 years drinking water from the polluted tail end of the Mississippi River— I figured any damage was already done. (But that New Orleans water sure was tasty!)

This time, though, I actually read the entire report. I’d heard about recent water issues in Flint, MI, and other cities, and I do have children who drink the water here. So I looked at this City of Asheville water quality report in detail, and here’s what I discovered.

The report contains a lot of rather informative text about how the City of Asheville treats its water and what possible risks could be present from various contaminants. The centerpiece of the report is a table that lists detected substances in the water. In 2015, 13 substances were detected out of 150 substances sampled for, and those 13 were “well within safe levels”. That sounded good.  But then I started looking at the report and wondering about certain things…

Let’s start with lead. The report has this:

City of Asheville water quality report- lead measurements

City of Asheville’s 2015 Water Quality Report: Lead, ppb

The “Highest Level Allowed” (the maximum contaminant level, or MCL) is 15 parts per billion (ppb). I did some searching and found a good article explaining lead sampling in water. If over 10% of tests come back over that level of 15 ppb, then the water utility must warn residents.

Asheville seems to have passed this test (only one sample exceeded the action level). However, the article mentioned above also describes how the tests for Flint, MI had possible problems because the Michigan Department of Environmental Quality threw out two samples.  With those samples included, the number of samples over the limit would have exceeded 10%, and water customers would have received a much earlier warning of possible lead issues.

So, back to Asheville. Were any samples thrown out— and if so, why? That information is not in the report.

Let’s take one more example: hexavalent chromium. Here is the City of Asheville report:

City of Asheville water quality report- hexavalent chromium measurements

City of Asheville’s 2015 Water Quality Report: Hexavalent Chromium, ppb

So, the average hexavalent chromium level in the water is 0.05 ppb. But there is no action level given, and the EPA definition text says nothing about any possible side effects. Through more searching, I learned that although hexavalent chromium is a carcinogen, the US EPA does not have a maximum contaminant level (MCL) for this compound.

California has a public health goal of 0.02 ppb, but North Carolina has a public health goal of 0.07 ppb. So, how would I interpret the Asheville value of 0.05 that falls in the middle of those two numbers? At least the report provides the detected range (ND – 0.08), so the maximum level in any sample was only a bit higher than the 0.07 level.

These two examples are not meant to disparage Asheville’s Annual Water Quality Report— it is a great way to deliver some basic information to water users. But for motivated water users, the report will lead to other questions— to answer these questions would require more context or a deeper dive into the actual data. Also, while I’m personally fairly tech-savvy and scientifically literate, many water users may lack the numerical and verbal literacy skills needed to understand the report.

For some closing thoughts:

  • How can water utilities make their sample data more transparent and available to users who want to take the “deeper dive”? How can users learn about sampling processes and decisions made— for example, “were any lead samples rejected, and why?”
  • How do users evaluate risks from compounds without EPA maximum contaminant levels, especially when states and regulators have conflicting levels?
  • How do water utilities present trend information and changes in water quality procedures over time? The 2015 report only shows data from that year. I dug up some older reports and found that hexavalent chromium was not detected at all in 2014. So what caused the detects in 2015? Also, lead was sampled at 100 sites in 2014, but only 50 sites in 2015.  Why was the number of samples cut in half?
  • How do you balance presenting too much information to the public (causing information overload) with presenting too little (causing users to be uninformed about quality issues)? Is there a way to show key information, but let users drill down into actual sampling data results for further details?
  • As a follow up to that last question— if you allow public access to sampling data, how do you ensure customers can interpret that data correctly, if those customers lack knowledge of sampling processes and any statistical techniques used?
  • Can the power of the internet be harnessed to distribute this data and make it understandable to customers? Are there tools that customers can use to explore the data on their own and see key findings and trends? I could not find anything online for Asheville.
  • Finally, given that a certain level of technical understanding is needed to read the Annual Report and explore any actual data— do we need a neutral party to serve as interpreter and interlocutor for the public when dealing with water utilities? Who would play that role?

Other Locus contributors will explore some of these issues in future posts.  In the meantime, please share your own thoughts and ideas in the comments section below.

 


Locus employee Todd Pierce

About guest blogger— Dr. Todd Pierce, Locus Technologies

Dr. Pierce manages a team of programmers tasked with development and implementation of Locus’ EIM application, which lets users manage their environmental data in the cloud using Software-as-a-Service technology. Dr. Pierce is also directly responsible for research and development of Locus’ GIS (geographic information systems) and visualization tools for mapping analytical and subsurface data.

EPA plans to regulate carbon emissions from aircraft

The US Environmental Protection Agency on Monday announced plans to limit carbon emissions from aircraft.

The EPA issued a final scientific assessment that concluded that carbon emissions from aircraft endanger public health and welfare, a legal prerequisite the agency must take before regulating those emissions.

EPA officials said last year when first proposing the aircraft scientific assessment that any regulation would be implemented in coordination with the International Civil Aviation Organization, a branch of the United Nations, which is drafting a global standard for airline carbon emissions.

Emissions from aircraft represent about 2% of total global carbon emissions, and the U.S. is the largest contributor to global aviation greenhouse gasses, according to federal data. The EPA said aircraft are the third-largest source of greenhouse gas emissions in the U.S. transportation sector, accounting for about 3% of such emissions in the country.

EPA has already set effective GHG standards for cars and trucks. EPA anticipates moving forward on standards that would be at least as stringent as ICAO’s standards.

Military and small piston-engine planes often used for recreational purposes would be exempt from the new regulation. Excluding these two categories, the EPA’s scientific finding applies to 89% of all U.S. aircraft carbon emissions.

Airlines for America, the trade association representing U.S. airlines and air cargo carriers, said it commends the EPA’s action because it is working within the coming international framework.

In 2009 the International Air Transport Association, a global trade group, agreed to achieve carbon-neutral growth by 2020, meaning any future growth in air travel wouldn’t produce a net increase in carbon emissions.

Then, from 2020 through 2050, the industry aims to reduce its 2005 emission levels by half, largely through the use of sustainable fuels. The effort to use sustainable fuels has already started, and manufacturers and airlines support of alternative fuels is high.

Carbon management.

EPA to regulate aircraft emissions.

To that end, the US biofuels leader, Amyris, Inc. and oil company Total have partnered to develop an alternative aviation jet fuel made with a sustainably-sourced hydrocarbon using Amyris’s proprietary synthetic biology platform. In 2014, Amyris received industry acceptance and regulatory approval for renewable jet fuel in key U.S., European and Brazilian markets. The New York Times writes that Amyris renewable jet fuel “holds the elusive promise of better energy security, reduced carbon emissions, and lower fuel costs. Amyris’ jet fuel can reduce greenhouse gas emissions by up to 80 percent compared with petroleum fuels, when compared unmixed to petroleum fuels on a one-to-one basis, according to Amyris. Renewable fuels like Amyris farnesane ‘would help reduce the carbon footprint of commercial aviation,’ the Federal Aviation Administration said.”

Amyris announced that, on May 29, 2016, Cathay Pacific commenced a two-year program of flights from Toulouse to Hong Kong using Amyris renewable jet fuel.  The initial 12-hour flight was the longest flight using a renewable jet fuel to date, further underpinning the ‘drop-in’ characteristics of Amyris Biojet fuels. Cathay took delivery of a new Airbus A350-900 that flew from the Airbus facility in Toulouse, France, to Hong Kong using a 10% biofuel jet blend provided by Amyris with the commercial and industrial support of Total S.A. The combination of the new airplane’s improvements in fuel efficiency (about 25% better than current aircraft) and the fuel’s properties resulted in an estimated 30% reduction in CO2 emissions according to Cathay when compared to comparable flights in recent-generation aircraft using fossil fuels.

Stanford Board of Trustees issues a statement on climate change

In a statement, the Board of Trustees underlines Stanford’s commitment to battling climate change, highlights university initiatives to address it and responds to Fossil Free Stanford’s request to divest from the fossil fuel industry.

The trustees have concluded that Stanford’s endowment will not divest, based on a review of criteria in the university’s Statement on Investment Responsibility and input from the Advisory Panel on Investment Responsibility and Licensing. The trustees also announce a new climate task force that will solicit new ideas from across the Stanford community for addressing climate change.

Find out more about Stanford University’s new climate change policy.