The new TSCA law not REACH (in data requirements)

After a bipartisan accord, the US Congress overhauled the 40-year-old Toxic Substances Control Act (TSCA), with legislation to give the EPA greater powers to regulate about 100 hazardous chemicals. This is the first major statutory update to US environmental law that’s been passed in over 25 years. On a 403-12 vote, the U.S. House of Representatives on 24 May 2016 approved bipartisan legislation to amend the key provisions of the TSCA.

Under existing law, the Environmental Protection Agency (EPA) has succeeded in regulating only five toxic chemicals since 1976, prompting public health advocates to decry TSCA as broken. Part of the problem is that the law grants EPA only 90 days to decide whether a new chemical poses “unreasonable risk” before it can enter the market, and agency officials say they rarely get the toxicity data they need to make that call in time.

The compromise legislation will remove those procedural hurdles, require EPA to focus on “high priority” chemicals such as arsenic and asbestos, and give the agency new tools to collect data from companies. It also grandfathers in some existing state chemical safety laws, such as those enacted under California’s Proposition 65, but limits states’ authority to create their own restrictions on chemicals in the future. State pre-emption was a key point of contention between Democrats and Republicans during negotiations.

So how does the new TSCA law compare to the EU REACH program? REACH (Registration, Evaluation, Authorization and Restriction of Chemical substances) is a regulation of the European Union, adopted to improve the protection of human health and the environment from the risks that can be posed by chemicals. REACH also promotes alternative methods for the hazard assessment of substances to reduce the number of tests on animals. Under the REACH Regulation, companies are responsible for providing information on the hazards, risks and safe use of chemical substances that they manufacture or import.

One notable difference between  REACH and TOSCA is how they support downstream users in implementing their chemicals management programs. Regarding knowing chemicals in products, REACH provides clear direction that downstream users must communicate uses up to suppliers and know and publicly disclose (if requested) if their product contains substances of very high concern (SVHC). The TSCA  does essentially nothing to support downstream users in knowing chemicals in products and disclosing them to the public, and its requirements for upstream communication to suppliers on uses are uncertain.

Significantly, REACH requires companies to provide minimum data sets on the inherent hazards of chemicals. This data enables downstream users to evaluate and compare chemicals on their hazard characteristics. TSCA, while expanding the ability of the US EPA to require testing of chemicals, explicitly prohibits the agency from requiring minimum data sets.

While it is important to avoid the unnecessary testing of chemicals, it is also vital to have a data set on chemicals that enable their comparison on a common set of endpoints. The EPA needs the authority to establish a minimum data set on chemicals, although this may differ depending on the specific chemical.

On assessing the hazards of chemicals, the new  US law falls short of REACH and impedes harmonizing European and US requirements for chemical testing. Given that most US chemical companies sell into the European market, and therefore are already meeting those requirements, it is inefficient and wasteful to establish a totally separate testing regime in the US.

To support the use of inherently safer chemicals, REACH provides a clear and more streamlined process for identifying and restricting SVHCs. Over the course of seven years, the Regulation has identified 161 Candidate SVHCs, while over five years, the  US bill only requires the designation of 25 high priority chemicals and with new law extending that number to about 100 chemicals. Harmonization, consistency, and predictability are critical for downstream users, and these elements are all lacking in the new TSCA law.

 

Why visibility on environmental health & safety compliance is still so important (yet another example)

Just this week, a subsidiary of Talus LLC was hit with a $4 million fine, $200,000 in community service payments and three years of probation for EHS violations and violations of the Clean Water Act.

According to the U.S. Attorney’s Office for the Eastern District of Louisiana, Talos Energy Offshore, LLC, will be required to comply with a Safety and Environmental Compliance Plan.  One of the more surprising findings was the violation of the Clean Water Act.  The company reportedly tampered with the method of collecting the monthly overboard produced water discharge samples to be tested for oil and grease based on its NPDES permit.  They were also fined for other various EHS violations related to offshore operations.

Although good environmental data management and a comprehensive Safety and Environmental Compliance Plan can’t entirely prevent humans from making errors, it can provide the structure and tools to ensure that companies are following environmental requirements.  It also provides visible mechanisms to track compliance and identify corrective actions. The fact that the findings from the U.S. Attorney’s office required the company to follow a Safety and Environmental Compliance Plan strongly suggests they did not have one in place at all.

Cases like this are a good reminder that companies can’t expect to stay in compliance with the myriad of regulations and requirements without a solid environmental plan, and the right tools to make that plan work.

If your organization is ready for a better compliance management system, here is a good place to start:

  • Step 1:  Know and document what rules and regulations you must follow— this is the hard part.
  • Step 2:  Get requirements into a shareable environmental compliance software system. And when you’re offshore, the best solution is in arguably a cloud software system, so that employees and stakeholders in any location can monitor and track real-time performance. And don’t forget to make sure the solution you choose can provide updates and alerts when relevant regulations change.
  • Step 3:  Trust, but verify— have the checks and audits set up and performed regularly, to find issues before the regulatory agencies find them.
  • Step 4:  Log in and view your status, issues, audits, findings and key metrics.

Once you put a well-thought-out plan in action, you will be amazed at how much easier it is to manage your environmental compliance— on or offshore.

Water Lead Contamination—From Rome to Flint

By now, the public health emergency resulting from lead-contaminated water in Flint, Mich., has been made abundantly clear.

The city changed its water source from the Detroit system to the Flint River in April 2014 as a cost-saving measure, exposing its residents to untreated water replete with lead leached from aging pipes. Last September, a local health center found that the proportion of children with elevated lead levels in their blood had nearly doubled since the switch was made. As attention grew around the issue, so too did the public alarm — with good reason. Photos showed Flint residents standing in long lines to collect bottled water and get their children’s blood tested, or standing in court calling for compensation.

And then there were the photos of people holding up samples of the water that had come out of their taps for more than a year. The liquid appears a translucent yellow-brown instead of colorless and clear; if images could emit an odor, these would be foul. But the truly terrifying fact about the water crisis in Flint is invisible. It is the insidious effect of growing up or growing old while unknowingly allowing lead into your bloodstream. According to the World Health Organization, lead creates developmental and behavioral issues in children that are believed to be irreversible.

Water lead poisoning has occurred not just in Flint but all over the country, for decades — and not only from water, but (primarily) from the paint that colors old homes.

On the federal level, there is no comprehensive understanding of the extent to which the population is being exposed to hazardous amounts of lead. Why? Because there is no federal or even state water quality database which public or impacted communities could mine for information. There is a better way. EPA and other agencies responsible for water quality must move into a new century and install a centralized, web-based water quality database where all testing results they collect from various reporting entities should be stored and make accessible in real-time to the general public. That type of transparency is the only way to avoid another Flint. The technology exists but political will may not be there yet.

Flint may have in recent months become synonymous with lead contamination in America, but it is by no means the only — or the most extreme — example of how the toxic element can make its way into our bodies.

Some historians argue that the lead poisoning contributed to the decline of the Roman empire. A team of archaeologists and scientists has recently discovered just how contaminated Roman tap water was. The team dredged sediment downstream from Rome in the harbor basin at Portus, a maritime port of imperial Rome, and from a channel connecting the port to the Tiber River. The researchers compared the lead isotopes in their sediment samples with those found in preserved Roman piping to create a historical record of lead pollution flowing from the Roman capital. Tap water from ancient Rome likely contained up to 100 times more lead than local spring water.

How come that 2000 years later we have still not learned the lesson?

Locus has been awarded by the Environmental Business Journal (EBJ) for a tenth year running!

Environmental Business Journal (EBJ) Recognizes Firms for Growth and Innovation in 2015

MOUNTAIN VIEW, CA–(Marketwired – February 02, 2016) — Locus Technologies announced today that Environmental Business Journal (EBJ), a business research publication which provides high value strategic business intelligence to the environmental industry, granted the company the 2015 award for Information Technology in the environmental and sustainability industry for the tenth year running.

Locus was recognized for continuing its strategic shift to configurable Multitenant pure Software as a Service (SaaS) EHS solutions and welcoming new, high profile customers. In 2015 Locus scored record revenue from Cloud software with annual growth over 20 percent. Locus also achieved a record renewal rate of 99 percent and signed up new customers including Shell Oil Company, Philips 66, Ameresco, California Dairies, Cemex, Frito-Lay, Genentech, Lockheed Martin, PPG Industries, United Airlines and US Pipe & Foundry. Locus also became the largest provider of SaaS environmental software to the commercial nuclear industry; currently over 50 percent of U.S. nuclear generating capacity uses Locus’ flagship product. Locus’ configurable Locus Platform gained momentum in 2015 with new implementations in the manufacturing, agricultural and energy sectors, including a major contract with Sempra Energy for greenhouse gas management and reporting.

“Locus continues to influence the industry with its forward-thinking product set, pure SaaS architecture, and eye for customer needs,” said Grant Ferrier, president of Environmental Business International Inc. (EBI), publisher of Environmental Business Journal.

“We are very proud and honored to receive the prestigious EBJ Information Technology award in environmental business for a tenth time. We feel it is a testament to our unwavering commitment and dedication to accomplish this level of recognition, especially now as we lead the market by providing robust solutions for the emerging space of cloud and mobile-based environmental information management,” said Neno Duplan, President and CEO of Locus Technologies.

The 2015 EBJ awards will be presented at a special ceremony at the Environmental Industry Summit XIV in San Diego, Calif. on March 9-11, 2016. The Environmental Industry Summit is an annual three-day executive retreat hosted by EBI Inc.

EU introduces more efficient monitoring of drinking water quality

New EU rules to improve the monitoring of drinking water across Europe come into force, improving access to wholesome and clean drinking water in Europe. As a first step following the European Citizens’ Initiative Right2Water, new rules adopted by the European Commission today provide flexibility to Member States as to how drinking water quality is monitored in around 100,000 water supply zones in Europe. This will allow for more focused, risk-based monitoring, while ensuring full protection of public health.

This new monitoring and control system will allow member states to reduce unnecessary analyses and concentrate on controls that really matter. This amendment of the Drinking Water Directive is a response to calls by citizens and the European Parliament to adopt legislation ensuring a better, fair and comprehensive water supply. It allows for an improved implementation of EU rules by Member States as it removes unnecessary burdens. Member States can now decide, on the basis of a risk assessment, which parameter to monitor given that some drinking water supply zones do not pose any risk for finding hazardous substances. They can also choose to increase or reduce the frequency of sampling in water supply zones, as well as to extend the list of substances to monitor in case of public health concerns. Flexibility in the monitoring of parameters and the frequency of sampling is framed by a number of conditions to be met, to ensure protection of citizens’ health. The new rules follow the principle of ‘hazard analysis and critical control point’ (HACCP), already used in food hygiene legislation, and the water safety plan approach laid down in the World Health Organization’s (WHO) Guidelines for Drinking Water Quality. Member States have two years to apply the provisions of this new legislation.

In order to effectively manage sampling and monitoring data at over 100,000 water supply zones water utilities and other stakeholders will need access to software like Locus EIM Water to organize complex water quality management information in real time and automate laboratory management programs and reporting. Locus EIM has been in use by numerous water utilities in the United States.

New Environmental Monitoring Technology Keeping the Air We Breathe Under an Unprecedented Level of Scrutiny

A recent article in the Los Angeles Times discussed advances in environmental monitoring technologies. Rising calls to create cleaner air and limit climate change are driving a surge in new technology for measuring air emissions and other pollutants — a data revolution that is opening new windows into the micro-mechanics of environmental damage. Data stemming from these new monitoring technologies coupled with advances in data management (Big Data) and Internet of Things (IOT) as discussed in my article “Keeping  the Pulse of the Planet: Using Big Data to Monitor Our Environment” published last year, is creating all new industry and bringing much needed transparency to environmental degradation. Real time monitoring of  radioactive emissions at any point around globe or water quality data are slowly becoming a reality.

According to the article author William Yardley, “the momentum for new monitoring tools is rooted in increasingly stringent regulations, including California’s cap-and-trade program for greenhouse gas emissions, and newly tightened federal standards and programs to monitor drought and soil contamination. A variety of clean-tech companies have arisen to help industries meet the new requirements, but the new tools and data are also being created by academics, tinkerers and concerned citizens — just ask Volkswagen, whose deceptive efforts to skirt emissions-testing standards were discovered with the help of a small university lab in West Virginia.”

“Taking it all into account, the Earth is coming under an unprecedented new level of scrutiny.”

“There are a lot of companies picking up on this, but who is interested in the data — to me, that’s also fascinating,” said Colette Heald, an atmospheric chemist at the Massachusetts Institute of Technology. “We’re in this moment of a huge growth in curiosity — of people trying to understand their environment. That coincides with the technology to do something more.”

The push is not limited to measuring air and emissions. Tools to sample soil, air emissions, produced water, waste management, monitor water quality, test ocean acidity and improve weather forecasting are all on the rise. Drought has prompted new efforts to map groundwater and stream flows and their water quality across the West.

Two of key issues that need to be addressed are validity of data stemming from new instruments and sensors for enforcement purposes and where is all (big) data be stored and how accessible it will be. The first question will be answered as new hand-held data collection instrumentation, sensors, and devices undergo testing and accreditation by governmental agencies. The second issue, a big data, has already been solved by companies like Locus Technologies that has been aggregating massive amounts of environmental monitoring data in its cloud-based EIM (Environmental Information Management) software.

As the article put it: “When the technology is out there and everyone starts using it, the question is, how good is the data? If the data’s not high enough quality, then we’re not going to make regulatory decisions based on that. Where is this data going to reside in 10 years, when all these sensors are out there, and who’s going to [manage] that information? Right now it’s kind of organic so there’s no centralized place where all of this information is going.”

However, the private industry and some Government organizations like Department of Energy (DOE) are already preparing for these new avalanches of data that are hitting their corporate networks and are using Locus cloud to organize and report increased volume of monitoring information stemming from their facilities and other monitoring networks.

EPA Issues a Draft Report on Assessment of the Potential Impacts of Hydraulic Fracturing for Oil and Gas on Drinking Water Resources

This assessment provides a review and synthesis of available scientific literature and data to assess the potential for hydraulic fracturing for oil and gas to impact the quality or quantity of drinking water resources, and identifies factors affecting the frequency or severity of any potential impacts. The scope of this assessment is defined by the hydraulic fracturing water cycle which includes five main activities:

  1. Water acquisition – the withdrawal of ground or surface water needed for hydraulic fracturing fluids;
  2. Chemical mixing – the mixing of water, chemicals, and proppant on the well pad to create the hydraulic fracturing fluid;
  3. Well injection – the injection of hydraulic fracturing fluids into the well to fracture the geologic formation;
  4. Flowback and Produced water – the return of injected fluid and water produced from the formation to the surface, and subsequent transport for reuse, treatment, or disposal; and
  5. Wastewater treatment and waste disposal – the reuse, treatment and release, or disposal of wastewater generated at the well pad, including produced water.

This report can be used by federal, tribal, state, and local officials; industry; and the public to better understand and address vulnerabilities of drinking water resources to hydraulic fracturing activities. The report provides a comprehensive analysis of published literature and hints on environmental data management challenges facing hydro fracking industry.  Find out more about our solutions for the oil & gas industry.

For more information and to download report please visit the EPA site: http://cfpub.epa.gov/ncea/hfstudy/recordisplay.cfm?deid=244651

A Better Way to Organize and Manage Environmental Compliance Data

Current Practice

How do companies currently handle and store their environmental information?

Managing an environmental project (contaminated site, emission source, or GHG inventory) is similar to making a Hollywood movie, with one difference: duration.  A movie is usually made in few months, whereas an environmental project typically spans years or decades.

The work involved in investigating, remediating or monitoring of contaminated or emissions sites is almost universally performed by outside consulting firms. Large companies rarely “put all their eggs in one basket,” choosing instead to apportion their environmental work amongst several to 10, 20, or even more consulting firms.  The actual work at a particular site is generally managed and performed by the nearest local office of the firm that has been assigned to the site.

At larger production facilities such refinery or a Superfund site, the environmental work is likely to span 10, 20, or 30 years while monitoring may continue even longer. Over this period of time, investigations are planned, samples collected, reports written, remedial designs created, and following agency approval, one or more remedies may be implemented. Not only is turnover in personnel commonplace, but owing to the rebidding of national contracts, the firm assigned to do the work typically changes multiple times over the life span of a remedial project.

The investigation of a single large, potentially contaminated site often requires the collection of hundreds or even thousands of samples. A typical sample may be tested for the presence of several hundreds of chemicals, and many locations may be sampled multiple times per year over the course of many years. The end result is an extraordinary amount of information. Keep in mind that this is just for one site. Large companies with manufacturing and/or production facilities often have anywhere from a few to several hundred sites. Those that also have a retail component to their operations (e.g., oil companies) can have thousands of sites. Add to this list compliance and reporting data, engineering studies, real time emission monitoring, and the amount of data becomes staggering and unmanageable by conventional databases and spreadsheets. Given the magnitude and importance of this information, one would expect environmental data management to be a high priority item in the overall strategy of any company subject to environmental laws and regulations. But this is not so; instead, our surveys of the industry reveal that a large portion of information sits in spreadsheets and home-built databases. In short, you have an entire industry with billions in liability making decisions using tools that are not up to the task. Robust databases are standard tools in other industries – but for whatever reason, the environmental business has failed to fully embrace them.

As a result, many organizations and governmental agencies are simply “flying blind” when it comes to managing their environmental information.

The lack of standards and inconsistencies in information management practices among the firms performing environmental work for a company impose a significant cost on the company’s overall environmental budget.  The fact that some firms may use spreadsheets, others their own databases, and still other various commercial applications may appear on the surface to be a benign practice, as each firm’s office uses the tools it is most comfortable with. But the overall cost to the customer in fact is enormous.

A Better Way

Is there a better approach that companies (both consultants and owners of environmental liability) can adopt to manage their environmental data?  The solution seems obvious:  get all the information about sites out of paper files, spreadsheets, and stand-alone or inaccessible databases and into an electronic repository in a structured and formatted form that—and this is the crucial point — any project participant can access, preferably from the web, at any time or any place. In other words, the solution is not merely to use computers, but to use the web to link the parties involved in an emission management or site cleanup, and this includes not only site owners and their consultants but also regulators, laboratories, and insurers, thus making them, in current jargon, “interoperable.” This may be obvious, but today it is also a very distant goal.

What would the ideal IT architecture of environmental industry in future look like? It would start, with wireless data entry using mobile devices by technicians in the field and wireless sensors where feasible. Labs would upload the results of analytical testing directly from their instrumentation and LIMS systems into the web-based database. During the upload process any necessary error checking and data validation would take place automatically. Consultants would review these uploads and put their stamp of approval on the data before it becomes part of the permanent database. Air monitoring devices and sensors would automatically upload their measurements into the same system. Ditto for any water or air treatment systems installed at facilities, metering devices for consumption of energy, water, or fuel, etc. Anything with an IP address and connected to the internet that produces data relevant to environmental or sustainability monitoring should feed data into the same system. (In today’s word there is a word for it: Internet of Things or IoT).

Behind the scenes, all data would be formatted and stored according to recognized and standard protocols. Contrary to widespread concerns, this does not require a single central repository for all data or any particular hardware architecture. Instead, it relies on common software protocols and formats so that individual computer applications can find and talk to one another across the Internet. The good news is that the most of these standards, such as XML, SOAP, AJAX, REST, and WSDL, already exist and are used by many industries. Others, such as DMR, SEDD, GRI, CDP, EDF, CROMERR, or EDD (spelling them out makes them sound no less obscure) are unique to the environmental industry and govern data interchange between, laboratories, consultants, clients and regulatory agencies. On top of these, there needs to be hacker-proof layers of authentication and password protection so that only the right people can access critical or sensitive information.

There is still some work to do to refine these technologies but the basic building blocks are already readily available and implemented by few progressive companies and regulatory agencies. The problems that this changed approach would address are many. First, data would be entered or uploaded just once, preferably electronically. Secondly, data transfer costs would drop and data quality would improve. No longer would the need exist to transfer data whenever one consulting firm is replaced by another or to maintain multiple databases that must be kept in sync. Third, the significant amounts of time that engineers, managers, and scientists now spend determining where a particular report is correct or looking up information on a site would dramatically decline. Fourth, by having their data in a consistent electronic format, companies would be in a better position to comply with the emerging demand to upload   information on their sites to state or federal agencies and organizations. Several progressive states have already imposed electronic deliverable standards (e.g., California and New Jersey), and US EPA is working on its own standards based on XML technology.  Last, and most significantly, site owners would assume possession of their data and as such, finally gain ready access to information about their own sites. This would seem particularly beneficial to public companies attempting to comply with the SOX.

The good news is that a system described above already exists.

We would love to discuss your environmental data situation with you. Contact us or call (650) 960-1640.

New spatial data analysis tools added to Locus EIM software

The new graduated symbol and graduated color legend tools allow for creation of sophisticated maps showing environmental data

MOUNTAIN VIEW, Calif., 11 May 2015 — Locus Technologies (Locus), the leader in cloud-based environmental compliance and information management software, has announced the addition of powerful new data analysis tools to the eGIS portion of its Environmental Information Management (EIM) software. The new tools support creation of graduated color and graduated symbol legends when posting analytical results, groundwater levels, and field measurements to the map.

With the graduated color tool, when users post data to the map, they have the option to color code the map symbols by having each result placed into one color ‘bin’ based on the result value. Users can classify the results using one of four different methods: equal interval (each bin has same numerical interval with user specified number of bins); defined interval (each bin has same numerical interval with user specified interval); percent (each bin represents the Nth% of the total result range, for example quantiles or quintiles or deciles); or standard deviation (each bin represents the # of standard deviations from the mean for the result value). There are further options for specifying min and max values for the bins and for picking linear or log scales. If users are comparing results to an action limit, they can also classify results based not on the result but on the exceedance factor (result/action limit).

The graduated symbol tool works the same as the graduated color tool, except instead of color coding results, users can have the symbols change sizes based on the result. By using these new legend tools, users can create sophisticated maps that help visualize their environmental compliance data and quickly see data hotspots or outliers.

 

ABOUT LOCUS EIM
The Locus EIM SaaS offers enterprise environmental information management for analytical data for water quality, chemicals, radionuclides, geology and hydrogeology. EIM provides the whole solution and supports workflow from sample planning, collection, analysis, data validation, visualization and reporting. Locus Mobile is fully integrated with EIM and provides for real time field data collection and synchronization with EIM.

Environmental and Sustainability Software: How one company’s cloud environmental and sustainability software is changing how firms and government manage environmental information.

How one company’s cloud environmental and sustainability software is changing how firms and government manage environmental information.