Blockchain: aggregate emissions reporting

In the next few years, an opportunity exists to make significant advances in how we monitor and manage environmental emissions to the air, soil, and water, potentially resulting in significant disruptions in current approaches. Currently, industries and commercial establishments monitor their emissions and submit reports on a regular basis, often as frequently as quarterly, to federal and state agencies to demonstrate they are meeting regulatory requirements. However, no one on the generating or receiving end of these data dumps and reports is aggregating these emissions to create a more composite, inclusive picture of emissions across sources or media. The reason is that emissions of different types and to different media are reported to separate regulatory entities that, in general, do not interact or talk to one another. And although there are significant potential benefits to both generators and regulators in reviewing integrated environmental data sets, our traditional methods of storing and sharing this information make such integrations a hugely difficult effort.

Only by integrating all available data can we begin to (1) assess local, regional, and ultimately the global impacts of these emissions, and (2) identify net improvements to our environmental practices that are only apparent when looking at the combined, interconnected body of collected data. Blockchain enables the integration of these data sets for quick, yet comprehensive “big picture” assessments.

Blockchain technology is a highly disruptive technology that offers an efficient way of storing records (called blocks) which are linked using cryptography. While still in its infancy, blockchain promises to change the world as we know it, much like the internet did after its introduction in 1991. Today, the technology is most widely associated with digital currencies and money transfers. In time, however, blockchain technology will not only shift the way we use the internet, but it will also revolutionize the global economy and almost all transactional business that relies on an intermediary.

One Environment, Health, and Safety and Sustainability  (EHS+S) sector well positioned to benefit from blockchain technology is emissions monitoring and reporting. I reported more on the technology and its impact on EHS space here.

Environmental monitoring current practice

Presently, companies with emissions monitor these following regulatory requirements, input the resulting data into a database or spreadsheet, perform emissions calculations on the entered readings, and then report the results of these calculations to regulators. The entire focus of this process is to (1) determine whether emissions of a single chemical or chemicals exceed prescribed levels and (2) evaluate the effect of these discharges on the media to which the compounds have been introduced by the polluting industry or other sources. There is no suitable software technology or mechanism to look at aggregate emissions across geographical areas or sectors or how emissions of one type interact with emissions of an entirely different kind. Examining such interactions could be far more critical than monitoring and assessing the impacts on human health and the environment of single parameter emissions to only one media, and may reveal new opportunities for optimizing our EHS+S practices for reduced cost with similar or improved performance.

Aggregate emissions

To take a hypothetical scenario, consider the possible consequential damages when two incompatible streams of chemicals or waste mix to create even worse chemicals as a result of their chemical reaction.  EPA has only recently started looking into these type of scenarios. Its Envirofacts databases allow the public to retrieve information from multiple sources of Envirofacts’ System Data relevant to your area of interest. However, each database is a separate silo of information (Figure 1). The next step that ought to be taken is to assess and as needed, report on the possible interaction of incompatible emission sources that are nearby, but are independently monitored and stored in disconnected databases (see Figure 2 below).

EPA Envirofacts 1

Figure 1: EPA Envirofacts databases allow the public to retrieve information from multiple sources, but only one source at time and disconnected from each other.

Most everyone taking prescription medicines comes to understand that interactions between drugs are quite common. Imagine something similar to the interaction of drugs in your body happening on a much larger scale in the environment. One does not have to imagine. EPA recently imposed the highest environmental fine ever at the 2,530-acre Eastern Michaud Flats Contamination Superfund site near Pocatello, Idaho. Two adjacent on-site phosphate ore processing facilities, the FMC Corporation and the J.R. Simplot Company, began operations at the site in the 1940s. The J.R. Simplot facility produces solid and liquid fertilizers using phosphate ore, sulfur, air and natural gas. The FMC plant is North America’s largest producer of elemental phosphorus which is used in a variety of products from cleaning compounds to foods.

Operations at these plants have independently contaminated both the groundwater and soil with hazardous chemicals. Both plants have received numerous environmental violations, many of which were settled with the EPA. Each of the sites has its environmental ills (and fines), but the more significant environmental problem is a combined regional plume. Everyone knows that acids and metals do not play well together. Sulphuric acid from the J.R. Simplot operation has leaked from surface impoundments into the groundwater and, on its way downstream, has leached all kinds of toxic metals from the FMC site, creating a highly poisonous plume of contaminants. An accurate assessment of the environmental disaster that exists in this area requires that the environmental impact of the two plants be examined in toto. Blockchain-based monitoring technology would allow both the public and regulators to see the resultant subsurface commingled plume and possibly pave the way to a more comprehensive remedy.

Issues involving contamination of multiple media have also arisen at sites where discharges of volatile organic compounds or VOCs have occurred. In Silicon Valley, where I live, many engineering consultants have made their living chasing plumes of VOC chemicals (e.g., TCE) and then, when deemed appropriate, have installed various groundwater treatment plants tucked in the back of parking lots of companies like Google or HP to ameliorate this contamination. Santa Clara, the central county in Silicon Valley, is home to more Superfund sites than any other county in the United States.

The process is analogous to rinsing detergent from a sponge. After many rinses, it still seems to have more in it. It is an endless process with little environmental benefit. Has anyone looked at the additional impact of the high energy demand for treatment systems that have minimal effect on improving groundwater, but can contribute significant CO2 equivalents to the atmosphere?

With blockchain technology, we could simultaneously measure the positive effect of the treatment plant removing contaminants from water and the negative impact that this same plant produces by contributing to the CO2 emissions. Quantities of removed chemicals over time could be plotted in real time vs. CO2 emissions produced resulting from high energy usage of the treatment plant. This would allow companies operating treatment plants and regulators overseeing them to determine at what point in time continued treatment could be harming, not helping the environment. It is these type of analyses that would benefit society and help with the decision to shut down a remediation process when diminishing returns of the treatment system are reached.

EPA Envirofacts 2

Figure 2: Interaction of incompatible emission sources is better managed if emissions are aggregated than if independently monitored and stored in disconnected databases.

How would blockchain technology help in a scenario like this? Chemical removal rate would be tracked in one block (of the chain) and CO2 emissions in another. Owner and regulator would agree on the formula to determine when the treatment process ceases to produce a significant environmental benefit. At this point, the system would be shut down. All of this would be monitored and measured in real time, and more importantly, it would be transparent to the owner, regulator, and the public.

Emissions measures should be preemptive, not reactive

When you think about emissions, they are generally (except incidents and accidents)  operating problems that can be managed and optimized before discharges even happen. It is to the benefit of companies to do it this way. Every process that has an exhaust or smokestack for dispersing air emissions or pipelines for discharging liquids to surface receptors or water bodies could be managed to reduce harmful emissions coming out the system regardless of regulatory prescribed permissible levels. As an organization with a legacy environmental site knows, it is far more cost-effective to eliminate the original cause of emission than to spend decades of effort to remediate after the fact.

Unfortunately, many businesses are currently not genuinely looking at the aggregated data they collect about their emissions, wastewater, and energy use alongside their operational metrics. Current practices for EHS+S data management only allow for very simplistic comparison of normalized indicators between these disparate data sets.  But it would benefit these operators to gather, aggregate and analyze data, and then make better, more cost-effective decisions as part of their risk-management protocols, while still maintaining their environmental compliance requirements. Blockchain technology allows for review of more detailed data when making decisions with aggregated data sources so that managers can look beyond the simple normalized performance indicators. For example, many organizations only review their environmental and sustainability performance on an annual basis, mainly because the current tools to aggregate this data require them to be evaluated on a consistent time frame, and there is a significant investment in bringing all of the relevant data together. But through blockchain technology, the data maintain their connection at every level.  This allows for trend evaluation at other time frames not currently being examined. So if some short-term operational practice causes a spike in emissions, that issue can be identified and resolved immediately, rather than waiting for the end of the year, when the emissions have already happened, and the effect may not even be apparent when averaged out on an annual time frame. Then, even looking beyond the facility or organization, blockchain also allows for data aggregation across industry, region, and country, so that we will be in a better position to forecast the future and assess the viability of different measures to ameliorate the problems confronting us.

A bigger picture

There is a growing need for companies to bring together information from their vast disconnected databases, single tenant clouds, and spreadsheets, and then mine the data they collect from these sources. In a decade or so, planet Earth may be a meshed grid of static sensors coupled with movable ones installed on people, animals (yes animals roaming in the wild), transportation devices, and other moving objects to collect data in real time. The conversation about the environmental landscape has evolved drastically over the last 50 years as we continue to understand the extent to which human activity has affected the planet. Companies and society need a collective and holistic understanding of the problems we face.

The only way to understand the full picture, and in turn to act meaningfully on a global level, is for all individuals and companies to understand the impact of their activities. It’s impossible to mitigate the net risks and effects of these activities on the planet when we have not fully assembled the data to characterize the problem and understand the full picture. Blockchain technology offers the best path forward, making it possible for environmental data be integrated at multiple levels. Any coordinated effort of this magnitude will be years in the making, but every journey starts with a first step. There are two impediments to institute a change like this: technology (until recently, blockchain did not exist) and a government with the initiative to require such technology. Just as was the case with the internet revolution of the nineties, the rate of progress in technology is surpassing politicians’ ability to come to grips with its impact on society.

So far, there have been no imposed data exchange standards; a prerequisite for a broad data exchange, land for implementation of blockchain technology.  But in the meantime, progressive organizations will want to start taking advantage of this technology to look at their operations and make more informed EHS+S decisions.

Looking forward with blockchain technology

Perhaps blockchain technology is not ready for prime time. Some may argue that it creates a secondary problem of additional energy consumption much like water treatment systems described earlier. This is a theme that is advocated by some media outlets and blockchain skeptics who argue that the computer algorithms require significant amounts of electricity to power the servers on which they run. Estimates of blockchain’s soaring energy use are likely overstating the electric power used as the current debate on power consumption is not backed by hard data. When it comes to technology, history has consistently shown that the cost will always decrease, and the impact will still increase over time. It is inevitable that blockchain technology will become more accessible with reduced infrastructure over the next few years.

Blockchain IoT Decentralization

Blockchain could completely change how companies run their businesses and present new opportunities far beyond sustainability and environmental emissions management.

We are living in a world where companies and governmental agencies are not able to comprehensively analyze  EHS+S information efficiently. Using blockchain technology will allow organizations to track, store, rollup, gain insights into, and also share their data with other interested parties as needed. It has the potential to put accurate and verifiable information into the hands of companies and regulating agencies more quickly. To make better progress on how we use EHS+S information, regulators will need to find ways that reward positive and proactive behaviors. We are not going to solve these issues by fining emitters until they behave. Blockchain technology can help us move us away from the punitive approach and toward a more collaborative one by assisting companies to reduce their emissions while lowering their operating costs at the same time. Social sharing elements may also play a role here, giving companies that benefit from the fruits of blockchain technology a valuable marketing and PR advantage over those who do not adopt this technology, and as such, lag behind in their progress on environmental issues.

Taking your environmental data to the next level with advanced integrated GIS features

In our last GIS blog, we covered some tips for choosing an integrated GIS/environmental data management system.  Now let’s look at some more advanced features that may be appealing to a wide range of data managers and facility owners.


1) Look for ways to integrate GIS base maps from other sources—so you can easily add piping diagrams, facility building layouts, or watersheds and drainage.

A map is much more meaningful with your facility information.  Google maps are great, but they won’t show your current building layout and your pipe and sewer diagrams.  So look for the capability to display maps created by other internal departments, like facilities or operations, so you can gain more insights from your data and have information readily available to share with other parts of the company who may disturb the area with digging or construction activity.

GIS+ - Intellus - historical buildings and watersheds

In this example from the Intellus website, environmental data can be visualized in relation to historical buildings and watersheds, both elements created by internal mapping departments. Internal base maps can also replace default maps from Esri or Google.

 

2) Load in other data from the Esri cloud to leverage a wide range of available data for your facility and use it with your GIS+ layers.

With the right GIS solution, it’s easy to bring in data from any public source, including government agencies, such as EPA. Combining your map with the world of online data can bring fresh insights to your environmental compliance challenges.

GIS+ - Intellus - audubon layers

In this example, GIS is used to merge Audubon bird points with Los Alamos National Laboratory (using the Intellus website).

 

3) Add reference information, such as photos and reports, to locations, and access them from the map.

Using a freeform polygon search (another must-have in a GIS tool), users can highlight an area and—with a single click—see all the data, field photos, and reports associated with that area. This is especially useful for active facilities where activities are planned in areas with legacy contamination (“know before you dig!”).  This type of functionality makes it simple for less savvy map users to easily get the information they need.

GIS+ - Intellus - freeform polygon tool

In this example, a polygon tool was used to highlight an area, and all data, documents, reports associated with ALL locations within the selected area are available from the map. These functions let facility staff review key environmental information before conducting activities at a facility location.

 

4) Better understand complex and dense maps with clustered locations.

Some facilities or sites have very dense sampling locations that can be a challenge to view on maps due to overlapping data points. Using the concept of clustering, one can more easily view the dense data, with results color-coded to help focus the review.  Clicking on the cluster reveals the details underneath for more close review.

In this example, tritium in monitoring wells at the Los Alamos site in New Mexico is being reviewed on the map. Without clustering, the map is impossible to read or use effectively. With clustering, the orange circles (“clusters”) indicate higher concentrations of the contaminant, and clicking on the cluster reveals the individual data points it contains.

GIS+ - Intellus - pre clustering

Before clustering is applied, we have a very difficult-to-read map.

GIS+ - Intellus - post clustering

After clustering is applied, the map is much more useful—colors focus the user on the higher concentration areas.

 

5) Watch trends or changes over time with time layers.

Imagine being able to watch changes in data over time with a simple slider control. An integrated GIS can provide that clarity over all the data in your database, so you can watch the progress of a cleanup, track chemicals in your water distribution system, or watch a groundwater plume move over time.

GIS+ time slider

 

6) Search for sampling results near a given address or within a given distance from selected map features.

For sites with concerned neighbors, it’s key to know what chemicals or other environmental conditions may be affecting them. With GIS tools, it’s easy to put in an address and see what is within a radius, or to look within a distance from a specific location.  In this example, you can see that there are no sampling locations within a 2000-ft radius from the center point.  You can also type in an address and see what is nearby.

GIS+ radius query

Looking at a 2000-ft radius from a location to see what is nearby.

 

7) Turn data into insights with data callouts.

The more information you can provide to users in a format that highlights results in a meaningful way, the more you can help streamline review and analysis for any data review effort. GIS tools that support data callouts (with logic to highlight actionable results) can quickly convert a mass of data into a clear picture of the issues at a facility or site.

In the map below, data summaries are presented on a facility map to show areas with results above an action limit and associated with other detected parameters. Reviewers can easily see the exceedances (in red) and pinpoint where the issues lie. Although these maps may look complicated to produce, they can be integrated with standard reporting tools that generate maps at the click of a button.

GIS+ data callouts


Intrigued by the possibilities?

When you’re evaluating an integrated GIS solution, make sure to dig deeper than the obvious necessary features to learn about all the advanced functionality that is available or on the product roadmap.  The best solutions will already have some truly powerful capabilities available, with an even longer list of upcoming features.

Your environmental information management will evolve to the next level when you have the flexibility of visualizing your data in so many ways.  Happy mapping!

Screenshot of Locus GIS location clustering functionalitySee your data in new ways with Locus GIS for environmental management.
Locus offers integrated GIS/environmental data management solutions for organizations in many industries.
Find out more >

Get a demo of Locus GIS

Error: Contact form not found.

Tips for choosing a GIS application for your environmental database

You can turbocharge your water data management by including a geographical information system (GIS) in your toolkit! Your data analysis efficiency also gets a huge boost if your data management system includes a GIS system “out of the box” because you won’t have to manually transfer data to your GIS. All your data is seamlessly available in both systems.

Not all GIS packages are created equal, though. Here are some tips to consider when looking at mapping applications for your environmental data:

 


1) Confirm that integration is built-in and thorough

Mapping is easy when properly integrated with your environmental database. You should not need extra filters or add-on programs to visualize your data. Look for built-in availability of features, such as “click to map”, that take the guesswork and frustration out of mapping for meaningful results.

Locus GIS+ Analytical Query

Good integration means mapping is as easy as clicking a “show on map” button. In Locus EIM, you can run a data query and click “Show results on map” icon, change the default settings if desired, and instantly launch a detailed map with a range of query layers to review all chemicals at the locations of interest.

Locus GIS+ Analytical Query Map

All the query results are presented as query layers, so you can review the results in detail. This map was created with the easy “show results on map” functionality, which anyone can use with no training.

 

2) Check for formatting customization options

Look for easy editing tools to change the label colors, sizes, fonts, positioning, and symbols. Some map backgrounds make the default label styles hard to read and diminish the utility of the map, or if you’re displaying a large quantity of data, you’ll almost certainly need to tweak some display options to make these labels more readable.

Locus GIS+ label styles

Default label styles are legible on this background, but they are a bit hard to read.

Locus GIS+ label styles

A few simple updates to the font color, font sizes, label offset, and background color make for much easier reading. Changes are made via easy-to-use menus and are instantly updated on the map, so you have total control to make a perfectly labeled map.

 

3) Look for built-in contouring for quick assessment of the extent of the spatial impact

Contours can be a great way to visually interpret the movement of contaminants in groundwater and is a powerful visualization tool. In the example below, you can clearly see the direction the plume is heading and the source of the problem. An integrated GIS with a contouring engine lets you go straight from a data query to a contour map—without export to external contouring or mapping packages. This is great for quick assessments for your project team.

Locus GIS+ contours

Contour maps make it easy to visualize the source and extent of the plumes. They can be easily created with environmental database management systems that include basic contouring functionality.

 

4) Look for something easy to use that doesn’t require staff with specialized mapping knowledge

Many companies use sophisticated and expensive mapping software for their needs. But the people running those systems are highly trained and often don’t have easy access to your environmental data. For routine data review and analysis, simple is better. Save the expensive, stand-alone GIS for wall-sized maps and complex regulatory reports.

Locus GIS+ saved chlorine map

Here is a simple map (which is saved, so anyone can run it) showing today’s chlorine data in a water distribution system. You don’t have to wait for the GIS department to create a map when you use a GIS that’s integrated with your environmental database system. When data are updated daily from field readings, these maps can be incredibly helpful for operational personnel.


Screenshot of Locus GIS location clustering functionalitySee your data in new ways with Locus GIS for environmental management.
Locus offers integrated GIS/environmental data management solutions for organizations in many industries.
Find out more >

Get a demo of Locus GIS

Error: Contact form not found.

Taking the next steps

After viewing some of the many visualization possibilities in this blog, the next step is make some maps happen!

  1. Make sure your environmental data system has integrated mapping options.
  2. Make sure your sampling/evaluation/monitoring locations have a consistent set of coordinates. If you have a mixed bag of coordinate systems, you will need to standardize. Otherwise, your maps will not be meaningful. Here are some options to try, as well as some good resource sites:
  3. Start with a few easy maps—and build from there.

Happy  mapping!